Fast GMM computation for speaker verification using scalar quantization and discrete densities
نویسندگان
چکیده
Most of current state-of-the-art speaker verification (SV) systems use Gaussian mixture model (GMM) to represent the universal background model (UBM) and the speaker models (SM). For an SV system that employs log-likelihood ratio between SM and UBM to make the decision, its computational efficiency is largely determined by the GMM computation. This paper attempts to speedup GMM computation by converting a continuous-density GMM to a single or a mixture of discrete densities using scalar quantization. We investigated a spectrum of such discrete models: from high-density discrete models to discrete mixture models, and their combination called highdensity discrete-mixture models. For the NIST 2002 SV task, we obtained an overall speedup by a factor of 2–100 with little loss in EER performance.
منابع مشابه
The use of subvector quantization and discrete densities for fast GMM computation for speaker verification
Last year, we showed that the computation of a GMM-UBMbased speaker verification (SV) system may be sped up by 30 times by using a high-density discrete model (HDDM) on the NIST 2002 evaluation task. The speedup was obtained using a special case of the product-code vector quantization in which each dimension is scalar-quantized in the construction of the discrete model. However, the speedup res...
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملA Bayesian approach to the verification problem: applications to speaker verification
In this paper, we study the general verification problem from a Bayesian viewpoint. In the Bayesian approach, the verification decision is made by evaluating Bayes factors against a critical threshold. The calculation of the Bayes factors in turn requires the computation of several Bayesian predictive densities. As a case study, we apply the method to speaker verification based on the Gaussian ...
متن کاملSpeaker Identification From Youtube Obtained Data
An efficient, and intuitive algorithm is presented for the identification of speakers from a long dataset (like YouTube long discussion, Cocktail party recorded audio or video).The goal of automatic speaker identification is to identify the number of different speakers and prepare a model for that speaker by extraction, characterization and speaker-specific information contained in the speech s...
متن کامل